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We evaluate the performance of models for the covariance structure of stock re-
turns, focusing on their use for optimal portfolio selection. We compare the mod-
els’ forecasts of future covariances and the optimized portfolios’ out-of-sample
performance. A few factors capture the general covariance structure. Portfolio op-
timization helps for risk control, and a three-factor model is adequate for selecting
the minimum-variance portfolio. Under a tracking error volatility criterion, which
is widely used in practice, larger differences emerge across the models. In gen-
eral more factors are necessary when the objective is to minimize tracking error
volatility.

The roots of modern investment theory can be traced back to Markowitz’s
(1952,1959) seminal idea that investors should hold mean-variance efficient
portfolios. In the past, however, mean-variance portfolio optimization was
not widely used. Instead, most investment managers focused on uncovering
securities with high expected returns. At the same time, theoretical research
on investments has concentrated on modeling expected returns. Similarly,
empirical research focused on testing such equilibrium models, or docu-
menting patterns in stock returns that appear to be inconsistent with these
models.

Several trends suggest that professional investors are rediscovering the
importance of portfolio risk management. There is mounting evidence that
superior returns to investment performance are elusive. Numerous studies
indicate that on average professional investment managers do not outper-
form passive benchmarks. In turn, the popularity of indexation [see, e.g.,
Chan and Lakonishok (1993)] has drawn attention to methods of optimally
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tracking a benchmark, especially when full replication of the benchmark is
not desired or not practical. The recent interest in asset allocation methods,
including international diversification, has also spurred interest in portfolio
optimization. Another factor is the increased use of sophisticated quantita-
tive methods in the investment industry, together with increased computing
power. In short, there is an increased emphasis on risk control in the invest-
ment management industry.

Empirically, portfolio optimization can yield substantial benefits in terms
of risk reduction, as the following simple experiment suggests. In order to
abstract from the problems of predicting expected returns, suppose the task is
to find the global minimum variance portfolio. Similarly, to sidestep for now
the thorny issues of predicting return variances and covariances, the investor
is assumed to have perfect foresight about the future values of these statistics.
There are nonnegativity constraints on the weights since short selling is
expensive for individual investors and not generally permissible for most
institutional investors. Further, to ensure that the portfolio is diversified, the
weight of a stock cannot exceed 2%. Every year this hypothetical investor
selects the global minimum variance portfolio from a set of 250 stocks that
are randomly selected from domestic NYSE and AMEX issues. The investor
follows a buy-and-hold strategy for this portfolio over the next year. The
experiment is repeated each year from 1973 to 1997 to give a time series
of realized returns on the portfolio. The strategy yields a portfolio with a
standard deviation of 6.85% per year. In comparison, a portfolio made up
of all the 250 stocks (with equal amounts invested in each stock) yields
a standard deviation that is more than twice as large (16.62% per year).
Everything else equal, the optimized portfolio’s lower volatility implies
that it should have a Sharpe ratio (the ratio of excess return to standard
deviation) that is more than double that of its equally weighted counterpart.
To give an idea of how this might translate into returns, suppose that the
return premium on stocks over the riskfree rate is expected to be 5% per
year. Then levering up the optimized portfolio can result in a portfolio with
the same volatility as the equally weighted portfolio, but with an expected
return that is higher by 7%. Accordingly, there are large potential payoffs
to portfolio risk optimization.

An additional boost to interest in optimization techniques stems from
how performance is evaluated in the investment industry. While the theory
of optimal portfolio choice suggests that investors should be concerned with
the variance of the portfolio’s return, in practice investment decisions are
delegated to professional money managers. Since managers are evaluated
relative to some benchmark, it has become standard practice for them to
optimize with respect to tracking error volatility (the standard deviation of
the difference between the portfolio’s return and the benchmark return).
Roll (1992) provides the analytics for this approach.
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Given the increasing emphasis on risk management and its potential
payoffs, there is a proliferation of portfolio optimization techniques. Yet
there has been a shortage of scientific evidence evaluating the performance
of different risk optimization methods. In particular, the benefits promised
by portfolio optimization (either with respect to volatility or tracking error
volatility) depend on how accurately the moments of the distribution of
returns can be predicted. This article tackles one aspect of this issue, namely,
how to forecast the second moments of returns. We start with the case where
the hypothetical investor is concerned with the volatility of the portfolio.
We compare the performance of different methods of forecasting variances
and covariances, with an eye to judging which models improve our ability
to optimize portfolio risk. The different risk models are evaluated on a
statistical basis (mean absolute forecast errors and the correlations between
forecast and realized values), and also on a more practical, economic basis
(the realized volatility of optimized portfolios based on a particular forecast
of the covariance matrix).

We focus on forecasting the second moments, rather than expected re-
turns, for two reasons. First, several studies examine the importance of the
forecasts of mean returns for mean-variance optimization [Michaud (1989),
Best and Grauer (1991), Chopra and Ziemba (1993), Winston (1993)]. There
is a general consensus that expected returns are notoriously difficult to pre-
dict, and that the optimization process is very sensitive to differences in
expected returns. At the same time, there is a common impression that re-
turn variances and covariances are much easier to estimate from historical
data [Merton (1980), Nelson (1992)]. Possibly, then, the second moments
pose fewer problems in the context of portfolio optimization. Our results
suggest that while future covariances are more easily predictable than fu-
ture mean returns, the difficulties should not be understated. To illustrate,
we replicate the previous exercise on portfolio optimization without the as-
sumption of perfect foresight. Instead, we use the past historical covariances
and variances (known as the portfolio formation date) as estimates of the
future moments. In this more realistic setting the optimized portfolio’s stan-
dard deviation is 12.94% per year. While optimization leads to a reduction
in volatility (relative to an equally weighted portfolio, where the standard
deviation was 16.62% per year), the problem of forecasting covariances
poses a challenge.

Second, we bring to bear on the issue of forecasting covariances the con-
siderable literature on the sources of return covariation. One interpretation
of these sources is that they represent common risk factors, and expected
returns provide compensation for bearing such risks. In this light, our results
help to validate different models of the sources of systematic risk. In other
words, if a factor does not help to predict return covariation, then it is less
plausible that such a factor represents a source of risk that is priced. In this
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regard, our work is in the same spirit as Daniel and Titman (1997), who
tackle the issue from the standpoint of expected returns.

Evidence on the efficacy of different models of return covariances is pre-
sented by Cohen and Pogue (1967), Elton and Gruber (1973), Elton, Gruber,
and Urich (1978), and Alexander (1978). Given the state of optimization
techniques and computational technology at that time, these articles exam-
ined only a very small set of stocks over short time periods. More impor-
tantly, they generally predate the large body of work on multifactor pricing
models, so they examine only a limited set of risk models. A related liter-
ature predicts stock market volatility [see, e.g., Pagan and Schwert (1990)
and Schwert and Seguin (1990)], but does not generally investigate its im-
plications for the important issue of portfolio risk optimization. In recent
work, Ledoit (1997) considers in detail a shrinkage estimator of covariances
and applies it to portfolio optimization.

Our tests are predictive in nature: we estimate sample covariances over
one period and then generate out-of-sample forecasts. The results can be
summarized as follows. The future return covariance between two stocks
is predictable from current attributes such as the firms’ market capitaliza-
tions, market betas, and book-to-market ratios. Such models generate a
slight improvement in our ability to predict future covariances compared
to forecasts based on historical covariances. Introducing additional factors,
however, does little to improve forecasting performance. A particularly
sobering result is that in all our models the correlation between predicted
and future covariances is not large. For instance, the correlation between
past and future sample covariances is 34% at the 36 month horizon and
much less (18%) at the 12-month horizon.

Since the models’ covariance forecasts move in the same direction as
the realized covariances, they help for portfolio risk optimization (as long
as we impose constraints to limit the impact of estimation errors). The
optimization exercises confirm that some form of portfolio optimization
lowers portfolio volatility relative to passive diversification. However, they
also confirm that more complicated models do not outperform (in terms of
lowering portfolio volatility) simpler models.

Extending our analysis to the case where the investor is concerned with
tracking error volatility, sharper distinctions arise between the different
covariance forecasting models. Intuitively, the focus shifts to identifying
those combinations of stocks that align most closely with the benchmark’s
risk exposures or attributes. As long as these exposures are attainable given
the sample of stocks, the problem is substantially simplified relative to the
task of identifying the global minimum variance portfolio. In this respect,
the tracking error criterion is less susceptible to errors from forecasting the
volatilities and covariances of the factors. Accordingly, the tracking error
volatility problem (which is the most commonly encountered in practice)
highlights much more dramatically the issue of how best to optimize. In
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general, we find that adding information from more factors helps to reduce
tracking error volatility. Moreover, an approach which works well is one
that circumvents the measurement errors in estimating factor loadings, but
directly matches the benchmark portfolio along a number of attributes.

The remainder of this article proceeds as follows. Section 1 provides
some background to our study by emphasizing the severe problems that
we shall face in predicting return covariances. Section 2 outlines some
of the different models we examine, and Section 3 provides evidence on
their forecast performance. The results of our optimization exercises with
respect to total variance are reported in Section 4. Extensions to the problem
of minimizing tracking error volatility relative to several benchmarks are
provided in Section 5. Section 6 concludes the article.

1. The Behavior of Stock Return Variances and Covariances

To set the stage for our analysis, we first provide some evidence on the
structure of return variances and covariances. Table 1 reports the distribution
of sample variances, covariances, and correlations of monthly returns on
three sets of stocks. Each set is drawn in April of every year from 1968
to 1998, and sample moments of returns are calculated from the preceding
60 months. The distribution is based on the estimated statistics pooled across
all years.

The first sample (panel A) comprises 500 stocks selected from the popula-
tion of domestic common stock issues on the NYSE and AMEX. Closed-end
funds, Real Estate Investment Trusts, trusts, American Depository Receipts,
and foreign stocks are excluded. To mitigate the problems associated with
low-priced stocks, only stocks with prices greater than $5 are included.
The average monthly stock return variance is 0.0098, corresponding to an
annualized standard deviation of about 34.29%. The average pairwise corre-
lation is 0.28, indicating that there are potentially large payoffs to portfolio
diversification.

Panels B and C check whether the second moments of returns are related
to firm size. In panel B, the sample comprises all NYSE and AMEX firms
with equity market capitalization in excess of the 80th percentile of the size
distribution of NYSE firms. Panel C examines all NYSE and AMEX firms
ranked below the 20th percentile of the NYSE size distribution. On average,
small stocks display return variances that are almost three times those of
large stocks. The average variance for small firms is 0.0181 (equivalent
to an annualized standard deviation of 46.60%) compared to 0.0067 for
large firms (or an annualized standard deviation of 28.35%). Small stocks
also tend to exhibit higher average pairwise covariances compared to large
stocks (0.0042 and 0.0021, respectively). However, the average correlation
between small stocks is only 24%, whereas the average correlation between
large stocks is 33%.
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Table 1
Distributions of variances, covariances, and correlations of returns on sample
stocks

Variances Covariances Correlations

Panel A: 500 random stocks

Mean 0.0098 0.0026 0.2801
Standard deviation 0.0063 0.0019 0.1477
Minimum 0.0013 −0.0062 −0.3767
25th percentile 0.0054 0.0013 0.1818
Median 0.0083 0.0023 0.2845
75th percentile 0.0126 0.0036 0.3824
Maximum 0.0474 0.0214 0.9196

Panel B: Large stocks
Mean 0.0067 0.0021 0.3300
Standard deviation 0.0041 0.0013 0.1529
Minimum 0.0014 −0.0031 −0.3137
25th percentile 0.0042 0.0012 0.2298
Median 0.0058 0.0019 0.3353
75th percentile 0.0080 0.0028 0.4350
Maximum 0.0336 0.0144 0.8864

Panel C: Small stocks

Mean 0.0181 0.0042 0.2438
Standard deviation 0.0140 0.0032 0.1381
Minimum 0.0011 −0.0128 −0.3767
25th percentile 0.0096 0.0021 0.1508
Median 0.0149 0.0037 0.2467
75th percentile 0.0225 0.0057 0.3397
Maximum 0.1241 0.0463 0.9175

At the end of April of each year from 1968 to 1998 three samples of stocks are
selected from eligible domestic common stock issues on the NYSE and AMEX.
For each set of stocks, sample variances, pairwise covariances, and correlations
are calculated based on monthly returns over the prior 60 months. Summary
statistics are based on the estimated values pooled over all years. In panel A, 500
stocks are randomly selected each year. In panel B, the sample of stocks includes
NYSE and AMEX domestic primary firms with equity market capitalization
above the 80th percentile of the size distribution of NYSE firms. In panel C, the
sample of stocks includes NYSE and AMEX domestic primary firms with equity
market capitalization below the 20th percentile of the size distribution of NYSE
firms.

Further, the distributions of the estimated statistics show substantially
larger dispersion within the group of small firms. Sample variances, for
instance, range from 0.0011 to 0.1241 for small firms, while the range for
large firms is from 0.0014 to 0.0336. Similarly, the covariances for small
firms run from−0.0128 to 0.0463 and extend from−0.0031 to 0.0144
for large firms. The interquartile spreads of these statistics confirm the
differences between small and large firms.

Conventional wisdom suggests that two stocks in the same industry are
more highly correlated than two stocks in different industries, since they are
likely to be affected by common events. Table 2 checks up on this intuition.
Each year we classify stocks into one of 48 industries using the industry
definitions from Fama and French (1997). Correlations are averaged across
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Table 2
Average correlations of individual stock returns for selected industries

Panel A: All stocks

Average
Average correlation with

correlation firms in all other
Industry within industry industries Difference

Chemicals (48) 0.3579 0.3019 0.0560
Construction Materials (69) 0.3427 0.2970 0.0457
Machinery (86) 0.3338 0.2895 0.0443
Petroleum & Natural Gas (71) 0.3646 0.2283 0.1363
Utilities (133) 0.3870 0.2186 0.1684
Business services (41) 0.2913 0.2799 0.0114
Electronic equipment (54) 0.3695 0.2931 0.0764
Wholesale (58) 0.2954 0.2799 0.0155
Retail (100) 0.3260 0.2773 0.0487
Banking (61) 0.4108 0.2925 0.1183
Insurance (23) 0.3921 0.2975 0.0946

Panel B: Large stocks

Average Average Average
correlation with correlation with correlation
other large firms large firms in all with small firms

Industry within industry other industries Difference within industry

Chemicals (21) 0.4194 0.3392 0.0802 0.3395
Construction Materials (25) 0.3920 0.3323 0.0597 0.3337
Machinery (33) 0.3917 0.3242 0.0675 0.3227
Petroleum & Natural Gas (28) 0.4228 0.2428 0.1800 0.3362
Utilities (68) 0.4570 0.2417 0.2153 0.3697
Business services (15) 0.3380 0.3142 0.0238 0.2801
Electronic equipment (18) 0.4222 0.3225 0.0997 0.3509
Wholesale (19) 0.3235 0.3086 0.0149 0.2900
Retail (40) 0.3925 0.3116 0.0809 0.3045
Banking (29) 0.4915 0.3269 0.1646 0.3705
Insurance (12) 0.4388 0.3290 0.1098 0.3616

Panel C: Small stocks

Average Average Average
correlation with correlation with correlation with
other small firms small firms in all large firms

Industry within industry other industries Difference within industry

Chemicals (26) 0.3206 0.2764 0.0442 0.3395
Construction Materials (44) 0.3178 0.2753 0.0425 0.3337
Machinery (53) 0.3052 0.2706 0.0346 0.3227
Petroleum & Natural Gas (43) 0.3246 0.2209 0.1037 0.3362
Utilities (65) 0.3394 0.2029 0.1365 0.3697
Business services (26) 0.2588 0.2560 0.0028 0.2801
Electronic equipment (36) 0.3397 0.2746 0.0651 0.3509
Wholesale (39) 0.2741 0.2586 0.0155 0.2900
Retail (60) 0.2741 0.2512 0.0229 0.3045
Banking (33) 0.3366 0.2630 0.0736 0.3705
Insurance (11) 0.3337 0.2771 0.0566 0.3616

At the end of April of each year from 1968 to 1998 eligible domestic common stock issues on NYSE and
AMEX are classified into 1 of 48 industry groups, based on the definitions of Fama and French (1997).
Pairwise correlations of monthly returns between stocks in each industry are estimated from the most
recent 60 months of data and then averaged across all stocks in the same industry. The average pairwise
correlation between stocks in the same industry and all other stocks is also calculated. The means over
all years of these average correlations are reported in this table for the 11 largest industries (in terms
of equity market capitalization and the number of constituent stocks). In panels B and C, firms within
these selected industries are further classified into two groups: small companies in an industry are firms
with equity market capitalization below the median size of NYSE firms in the same industry, and large
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Table 2
(continued)

companies in an industry are firms with equity market capitalization above the median for NYSE firms
in that industry. Pairwise correlations are averaged within small firms in the same industry, within large
firms in the same industry, between large and small firms in the same industry and between small and
large firms in an industry and same-size firms in all other industries. Means across all years are reported
in panel B for large firms and in panel C for small firms. The average number of firms in each industry
is reported in parentheses.

all pairs of stocks from the same industry and across all pairs of stocks
from different industries. To reduce clutter, we present results only for the
industries with the highest market capitalization and with the most firms.

Panel A of Table 2 indicates that the correlation between two stocks is on
average larger when they are from the same industry than when they belong
to different industries. The difference is particularly striking for stocks in
the utility, petroleum, banking, and insurance industries. This may be taken
as evidence that these particular industries tend to be more homogeneous
groupings.

In the remaining panels of Table 2 we partition firms within an industry
into two sets. Large stocks (panel B) have market capitalization exceeding
the median size of NYSE firms in the industry. We calculate the average
pairwise correlations between a large stock and large stocks in the same
industry, large stocks in all other industries, and small stocks in the same
industry.

The differences between the within-industry and across-industry correla-
tions stand out even more strongly for large firms. In the case of large utility
stocks, for example, the average within-industry correlation is 0.4570, while
the average correlation with large stocks in all other industries is 0.2417,
yielding a difference of 0.2153. As further evidence of the strong tendency
for large stocks to move together, note that in many cases the correlation
between large stocks across different industries is as high as the within-
industry correlation between large and small stocks.

Panel C repeats the exercise for small stocks (with market capitalization
below the NYSE median in an industry). Here the results reinforce the
conclusions from Table 1 about the variation across small stocks. Compared
to large stocks, the correlations between small firms are lower, even when
they share the same industry affiliation. The difference between the within-
industry and across-industry average correlation is also less sharp. Perhaps
most tellingly, on average a small stock shows less correlation with another
small stock in the same industry than with a large stock in the same industry.
For example, the average correlation between two small utility stocks is
0.3394, while the average correlation between a small utility stock and a
large utility stock is 0.3697.

The upshot of this section is that there is good news and bad news.
The good news is that stock return variances and covariances display some
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structure. There is encouraging evidence that certain characteristics, such
as firm size and industry affiliation, tell us something about the variances
and covariances of returns. The bad news is that this information may be
useful only in a minority of cases. As standard textbook discussions sug-
gest, the number of covariance terms far outweighs the number of variance
terms. There are also far more pairwise combinations of stocks drawn from
different industries than from the same industry. As a result, the patterns
documented in this section may not help in terms of predicting most ele-
ments of the variance-covariance matrix.

2. Predicting Stock Return Covariances

Given our focus on portfolio risk optimization, we concentrate on directly
predicting return covariances (forecasts of variances are discussed in a sub-
sequent section). We use a number of different forecasting models. Each
model is applied to the returns on a sample of stocks drawn from domestic
common equity issues listed on the NYSE and AMEX. Given our earlier
evidence on the noise in estimating covariances for small stocks, we exclude
stocks that fall in the bottom 20% of market capitalization based on NYSE
breakpoints. Stocks trading at prices less than $5 are also excluded. From
the remaining stocks we randomly select 250 in April of each year from
1968 to 1997. Forecasts are generated based on the past 60 months of prior
data (the estimation period).

2.1 Full Covariance Matrix Forecasts
The starting point for forecasting return covariances is given by the sam-
ple covariances based on the estimation period. For example, the sample
covariance between stocksi and j is given by

covi j = 1

59

60∑
k=1

(ri t−k − r̄ i )(r j t−k − r̄ j ) (1)

whereri t is the return in excess of the monthly Treasury bill return for
stock i in month t and r̄ i is the sample mean excess return. The sample
covariances, however, are very sensitive to outlier observations [see Huber
(1977)].

2.2 Covariance Forecasts from Factor Models
Forecasts from the full covariance matrix model may reflect firm-specific
events that happen to affect several stocks at the same time, but which are
not expected to persist in the future. An alternative approach is to strip out
the idiosyncratic components of the covariance by introducing pervasive
factors that drive returns in common. One such formulation is given by the
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strict factor model of security returns:

ri t = βi 0+
K∑

j=1

βi j f j t + εi t . (2)

Here f j t is the j th common factor at timet , andεi t is a residual term. The
coefficientβi j gives the loadings, or sensitivities, of stocki on each of the
K factors. Assuming that these factors are uncorrelated with the residual
return and that the residual returns are mutually uncorrelated, the covariance
matrix V of the returns on a set ofN stocks is given by

V = BÄB′ + D, (3)

whereB is the matrix of factor loadings of the stocks,Ä is the covariance
matrix of the factors, andD is a diagonal matrix containing the residual
return variances.

We use a variety of factor models. In each case we use the 60 months of
data over the estimation period to obtain the factor loadings of a stock. The
factors are measured as the returns on mimicking portfolios, as in Chan,
Karceski, and Lakonishok (1998). The mimicking portfolio returns over
the prior 60 months also provide estimates of the covariance matrix of the
factors, loadings, and residual variances that are the inputs to Equation (3).

Results are reported for the following factor models [see Chan, Karceski,
and Lakonishok (1998) for full details]. Aone-factor modeluses the excess
return on the value-weighted market index as the single factor. This model
corresponds to the standard CAPM or single-index model. Thethree-factor
modelaugments the value-weighted market index with size and book-to-
market factors. This model has been proposed by Fama and French (1993).
The remaining models add factors that have been found to work well in cap-
turing stock return covariation [see Chan, Karceski and Lakonishok (1998)].
Specifically, afour-factor modelincludes, along with the three Fama and
French factors, a momentum factor. This latter factor captures the tendency
for stocks with similar values of past 6-month return (measured over the pe-
riod from 7 months to 1 month ago) to behave similarly over the future with
respect to their returns. Aneight-factor modelconsists of the market factor
as well as factors associated with firm size, book-to-market, momentum,
dividend yield, cash flow yield, the term premium, and the default premium.
The10-factor modelcomprises these factors along with the beta factor (the
return spread between a portfolio of high-beta stocks and a portfolio of low-
beta stocks) and a long-term technical factor (based on stocks’ cumulative
returns measured over the period from 60 months to 12 months ago).

2.3 Forecasts from a Constant Covariance Model
This forecasting model assumes that all pairwise covariances between stocks
are identical. We estimate the constant covariance,cov, as the simple mean
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across all pairwise stock return covariances from the estimation period.
This model can be thought of as a version of a James–Stein estimator which
shrinks each pairwise covariance to the global mean covariance (while giv-
ing no weight otherwise to the specific pair of stocks under consideration).
As one motivation for this approach, the noise in stock returns and the re-
sulting estimation error suggest that it may be unwise to make distinctions
between stocks on the basis of their sample covariances. Instead, it may
be more fruitful to assume that all stocks are identical in terms of their
covariation.1

3. Empirical Results

3.1 Covariance Forecasts
At the end of April in every year of the sample period, each model’s fore-
casts are compared to the sample covariances realized over a subsequent
period. We report the results from two experiments. Realized covariances
are measured over the subsequent 12 months (the test period) in the first ex-
periment, and over the subsequent 36 months in the second experiment. The
lengths of the test periods are chosen to correspond to realistic investment
horizons. Since the forecasts are generated using a period disjoint from the
test periods, our tests are predictive in nature.

Panel A of Table 3 provides summary statistics on the forecasted co-
variances from each model. Forecasts from the historical full covariance
model display the largest standard deviation (0.18%) of all the models,
suggesting that straightforward extrapolation from the past may be overly
accommodative of the data. In comparison, the factor models tend to smooth
out the covariances, yielding less extreme forecasts. The standard deviation
of forecasts from a one-factor model is 0.14%, while the multifactor mod-
els share similar standard deviations of about 0.16%. Since the historical
full covariance model is a limiting case where there are as many factors as
stocks, the general impression is that the high-dimensional factor models
are prone to making overly bold predictions. As the dimensionality of the
factor model grows, there is an increasing chance that the model snoops the
data, resulting in overfitting.

The remaining panels of Table 3 compare each model’s forecasts with
sample covariances estimated over the subsequent 12 months (panel B) or
over the subsequent 36 months (panel C). Forecast performance is first eval-
uated in terms of the absolute difference between the realized and forecast
values. The single-factor model turns in the lowest mean and median abso-
lute error. Since it is the most conservative of the factor models in terms of
the dispersion of its forecasts, the one-factor model is apparently not penal-

1 Frost and Savarino (1986) and Jobson and Korkie (1981) provide evidence that using the common sample
mean return as the expected return for each stock improves the out-of-sample performance of optimized
portfolios relative to assuming that historical average returns will persist.
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Table 3
Performance of covariance forecasting models

Panel A: Properties of forecasted covariances

Standard 5-th 95-th
Model Mean deviation Minimum percentile percentile Maximum

Full covariance 0.0027 0.0018 −0.0051 0.0003 0.0061 0.0211
1-factor 0.0025 0.0014 −0.0001 0.0007 0.0051 0.0130
3-factor 0.0026 0.0015 −0.0017 0.0006 0.0055 0.0150
4-factor 0.0026 0.0016 −0.0018 0.0006 0.0055 0.0151
8-factor 0.0026 0.0016 −0.0028 0.0006 0.0056 0.0159
10-factor 0.0026 0.0016 −0.0032 0.0005 0.0057 0.0162
Average covariance 0.0027 0.0 0.0027 0.0027 0.0027 0.0027

Panel B: Forecast performance based on subsequent 12 months

Absolute forecast error
95-th

Model Mean Median percentile Maximum Correlation Slope

Full covariance 0.0040 0.0028 0.0115 0.1631 0.1792 0.3589
1-factor 0.0037 0.0026 0.0107 0.1409 0.1643 0.5435
3-factor 0.0038 0.0027 0.0110 0.1461 0.1994 0.4868
4-factor 0.0038 0.0027 0.0110 0.1462 0.1987 0.4808
8-factor 0.0038 0.0027 0.0111 0.1518 0.1963 0.4573
10-factor 0.0038 0.0027 0.0112 0.1535 0.1962 0.4488
Average covariance 0.0039 0.0030 0.0105 0.1403 0.0000 0.0000

Panel C: Forecast performance based on subsequent 36 months

Absolute forecast error
95-th

Model Mean Median percentile Maximum Correlation Slope

Full covariance 0.0019 0.0016 0.0051 0.0224 0.3394 0.3658
1-factor 0.0018 0.0014 0.0046 0.0215 0.3416 0.4863
3-factor 0.0018 0.0015 0.0047 0.0214 0.3590 0.4599
4-factor 0.0018 0.0015 0.0047 0.0214 0.3583 0.4566
8-factor 0.0018 0.0015 0.0048 0.0211 0.3593 0.4405
10-factor 0.0019 0.0015 0.0048 0.0211 0.3599 0.4340
Average covariance 0.0019 0.0017 0.0042 0.0217 0.0000 0.0000

At the end of April of each year from 1973 onward a random sample of 250 firms is drawn from eligible
domestic common stock issues on the NYSE and AMEX. Forecasts of monthly return covariances are
generated from seven models, based on the prior 60 months of data for each stock. Summary statistics
for the distribution of forecasted values are reported in panel A. Forecasts are then compared against
the realized sample covariances estimated over the subsequent 12 months (panel B) and over the
subsequent 36 months (panel C). The last estimation period ends in 1997 in panel B, and ends in 1995
in panel C. Summary statistics are provided for the distribution of the absolute difference between
realized and forecasted values of pairwise covariances. Also reported is the Pearson correlation
between forecasts and realizations, and the slope coefficient in the regression of realizations on
forecasts.

The full covariance model uses the return covariance estimated over the most recent past 60
months prior to portfolio formation as the forecast. Covariance forecasts from the factor models are
based on Equation (3) in the text. The one-factor model uses the excess return on the value-weighted
CRSP index over the monthly Treasury–bill rate as the factor. The three-factor model includes the
excess return on the value-weighted index as well as size and book-to-market factors. The four-factor
model includes these three as well as a momentum factor (based on the rate of return beginning 7
months and ending 1 month before portfolio formation). The eight-factor model uses as factors the
market, size, book-to-market, momentum, dividend yield, cash flow yield, the term premium and the
default premium. The 10-factor model includes these as well as the mimicking portfolio for the beta
factor and a long-term technical factor (based on the rate of return beginning 60 months and ending
12 months before portfolio formation). In the average covariance model the forecast is the average
across all pairwise covariances of stocks in the sample.
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ized as heavily as the other models. By the same token, while the average
covariance model has a large mean absolute error, it nonetheless does not
do disastrously. Its performance is on a par with the full covariance model,
which has the highest mean absolute forecast error (the median absolute
error gives roughly the same ordering). The differences across the models’
performances are slight, but the striking message is that more factors do not
necessarily give rise to smaller forecast errors.

The last two columns of panel B provide additional measures of forecast
performance. Specifically, we regress the realized values on the predicted
values and recover the slope coefficient and the correlation coefficient from
the regression. While the mean absolute error criterion penalizes a model for
making overly bold predictions, the correlation coefficient focuses more on
whether the predictions tend to be in the same direction as the realizations.2

As the high-dimensional models are more likely to overfit the data, the
slope coefficients on their forecasts are more attenuated relative to the sim-
pler models. For example, the slope coefficient from the 1-factor model
is 0.5435, compared to 0.3589 for the full covariance model and 0.4488
for the 10-factor model. The correlations suggest there is little distinction
between a 3-factor and a 10-factor model. The correlations for the full co-
variance and one-factor models stand apart from the others, but for different
reasons. In the case of the one-factor model, the correlation is only 0.1643,
suggesting that exposures to market risk do not fully capture variation in
realized covariances. For the full covariance model, the large dispersion of
its forecasts pull down the correlation to 0.1792.

When the forecasts are compared to covariances realized over the subse-
quent 36-month test period (panel C), the average absolute forecast errors
are reduced. For instance, the mean absolute error for the full covariance
model is 0.0040 for the 12-month test period, compared to 0.0019 for the
36-month test period. The drop in forecast errors suggests that there is a lot
of noise in covariances measured over a period as short as 12 months. As
additional confirmation, the correlations between forecasts and realizations
are higher over the 36-month test period than over the 12-month test pe-
riod. Nonetheless, as in panel B, extending the number of factors beyond a
relatively small set does not lead to superior forecasting performance.3

3.2 Additional Results
In additional, unreported work (available from the authors upon request) we
extend our results in two directions: forecasting correlations, and modifying

2 Using Spearman rank correlations between forecasts and realizations does not alter the main findings.
3 To help in assessing the magnitude of the forecast errors in panel C, we also generate forecasts from a

randomized model. That is, the forecast of the future 36-month covariance between two stocks is given
by the historical covariance between a randomly selected pair of stocks. This randomized model yields a
mean absolute error of 0.0030.
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the factor models. When we repeat the forecasting exercises for correlations,
we find that the relative performance of the different models is quite similar
to their performance in forecasting covariances. The various factor models
differ only slightly in terms of mean absolute errors. In particular, the con-
stant correlation model actually generates the lowest mean absolute errors
in forecasting correlations. In general the results suggest that it is harder
to predict correlations than covariances. For the 36-month test period, for
example, the correlation between past and future correlations averages 24%
across the models, compared to an average correlation of about 34% be-
tween past and future covariances.4

The overall verdict from Table 3 is that the various models for forecast-
ing covariances generally perform quite similarly. The factor models yield
somewhat smaller absolute errors than the full covariance model, but the
forecast errors provide little discrimination between a 3-factor model and
a 10-factor model. Indeed, assuming that all pairwise covariances are con-
stant would not lead to much worse performance. Yet, as the correlations
in Table 3 suggest, the factors are able to capture the direction in which
realized covariances vary with beta, size, and other risk exposures. Why
then isn’t there a more appreciable improvement from models with multi-
ple factors? Factor (or index) models are so widely used in financial research
and investment practice that we feel compelled to dig deeper and examine
what implementation aspects may be hurting the models’ performance. In
additional unreported work we explore two such aspects: the timeliness of
stocks’ estimated exposures, and the functional form implied by the factor
model in Equation (3). In general, we find that modifications to address
these potential problems do not alter our conclusions.

3.3 Variance Forecasts
We also apply several models (described in the appendix) to forecast return
variances. The results for forecasting variances (Table A.1), when placed
alongside the results for covariances, suggest that variances are relatively
more stable, and hence easier to predict, than covariances. Past and future
return covariances (measured over the subsequent 36 months) have a cor-
relation of 33.94% (panel C of Table 3), while the same correlation for
variances is 52.25%. As in our earlier results, however, higher dimensional
models do not necessarily raise forecasting power.

In terms of forecasting return covariances and variances, our bottom line
is as follows. There is some stable underlying structure in return covari-

4 Using additional factors based on size or market beta may help less for forecasting correlations than for
forecasting covariances due to offsetting effects in predicting covariances and variances. In Table 1, for
example, return covariances are generally decreasing with firm size, while return variances also decrease
with firm size. As a result, what might otherwise be a strong relation between firm size (or other factors)
and covariances is dampened when the covariances are scaled by standard deviations.
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ances. Factor models help to improve forecast power, but there is little to
distinguish between the performance of a 3-factor model and a 10-factor
model. Modifications of the factor model structure, such as relaxing the
model’s linear structure or having more timely information on loadings
and attributes, do not salvage the models. The situation improves some-
what when it comes to forecasting variances. Future variances are relatively
more predictable from past variances, and so the models’ forecast power is
relatively stronger.

4. Applying the Forecasts: Portfolio Optimization

4.1 The Global Minimum Variance Portfolio
An important reason for forecasting the variances and covariances of re-
turns is to provide inputs into the portfolio mean-variance optimization
problem. The perils of forecasting expected returns are well known. In
terms of forecasting the second moments, our results from the previous sec-
tions suggest that there are relatively minor differences between the various
models’ performance. In this sense the choice of a particular model for the
second moments may matter less from the standpoint of optimization. The
weights for an optimized portfolio (with constraints imposed) are compli-
cated functions of the forecasts, however. It is thus not straightforward to
assess the economic impact of errors in forecasting the second moments.
In this section we report the results of several portfolio optimization exer-
cises. These let us judge how the models’ forecasting performance translates
into the variance of the optimized portfolio’s returns. Since we place con-
straints on the portfolio weights, the optimization exercises also let us tame
the occasional bold forecasts from some of the models. In this respect a
more meaningful comparison across the models can emerge. From both the
technical and practical standpoint, therefore, the optimization experiments
provide perhaps the most important metric for evaluating the models.

The setup of our optimization experiments is as follows. To highlight
the role of the second moments, our goal is to form the global minimum
variance portfolio (any other point on the efficient frontier would put some
emphasis on forecasts of expected returns). In April of each year from 1973
to 1997, we randomly select 250 stocks listed on the NYSE and AMEX.5

We use our different models to forecast future variances and covariances for
these stocks’ returns. These forecasts are the inputs to a quadratic program-
ming routine. In order to make the experiments correspond as closely as
possible to actual practice, several other constraints are imposed. Portfolio
weights are required to be nonnegative, since short selling is not generally

5 As in the earlier sections, we consider only domestic common equity issues above the second decile of
market capitalization based on NYSE breakpoints, and with prices greater than $5.
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Table 4
Performance and characteristics of minimum variance portfolios based on forecasting models

Panel A: Performance of portfolios

Average number
Standard Sharpe Tracking Correlation of stocks with

Model Mean deviation ratio error with market weights above 0.5%

(1) Full covariance 0.1554 0.1294 0.6405 0.0739 0.8764 53
(2) 1 factor 0.1610 0.1280 0.6907 0.0926 0.7972 54
(3) 3 factor 0.1569 0.1266 0.6659 0.0877 0.8197 54
(4) 9 factor 0.1529 0.1292 0.6224 0.0772 0.8638 54
(5) Product of standard 0.1571 0.1263 0.6693 0.0879 0.8188 55

deviations
(6) Industry, size 0.1612 0.1281 0.6919 0.0852 0.8309 61
(7) Combination 0.1560 0.1259 0.6624 0.0841 0.8358 54
(8) 250 stocks, 0.1431 0.1554 0.4539 0.0304 0.9807 45

value-weighted
(9) 250 stocks, 0.1727 0.1662 0.6027 0.0616 0.9287 0

equally-weighted

Panel B: Characteristics of portfolios

Beta LogSize BM DP Percent invested in:
Model (Rank) (Rank) (Rank) (Rank) SIC 35, 36 SIC 49

(1) Full covariance 0.5533 20.46 0.7982 0.0626 3.82 46.66
(1.76) (7.48) (5.84) (8.04)

(2) 1 factor 0.5071 20.36 0.8491 0.0643 1.97 57.85
(1.28) (7.40) (6.20) (8.52)

(3) 3 factor 0.5141 20.36 0.8234 0.0642 2.41 55.74
(1.24) (7.40) (5.88) (8.40)

(4) 9 factor 0.5357 20.38 0.8106 0.0625 3.83 47.76
(1.56) (7.48) (5.96) (8.08)

(5) Product of standard deviations 0.5948 20.81 0.8118 0.0652 3.20 57.96
(2.04) (8.20) (5.88) (8.56)

(6) Industry, size 0.6490 20.37 0.8258 0.0674 0.46 61.09
(2.28) (7.32) (6.12) (8.52)

(7) Combination 0.5330 20.40 0.8178 0.0654 2.55 53.82
(1.40) (7.40) (6.04) (8.36)

(8) 250 stocks, value-weighted 0.9897 22.34 0.5844 0.0408 13.20 8.66
(4.60) (10.0) (3.88) (6.32)

(9) 250 stocks, equally-weighted 1.0686 20.28 0.7593 0.0413 11.02 15.31
(5.20) (7.12) (5.24) (6.32)

At the end of April of each year from 1973 through 1997 a random sample of 250 firms is drawn from
eligible NYSE and AMEX domestic common stock issues. Forecasts of covariances and variances of
monthly excess returns (over the monthly Treasury bill rate) are generated from different models, using
the prior 60 months of data for each stock. Based on each model’s forecasts of variances and covariances,
a quadratic programming procedure is used to find the global minimum variance portfolio. The portfolio
weights are constrained to be nonnegative and not larger than 2%. These weights are then applied to
form buy-and-hold portfolio returns until the next April, when the forecasting and optimization steps
are repeated and the portfolios are reformed. For each procedure, summary statistics are presented in
panel A for the annualized mean return and annualized standard deviation for the returns realized on
the portfolio; the annualized average Sharpe ratio (the mean return in excess of the Treasury bill rate,
divided by the standard deviation); the correlation between the monthly portfolio return and the return
on the S&P 500 index; the annualized tracking error (standard deviation of the portfolio return in excess
of the S&P 500 return); and the average number of stocks each year with portfolio weights above 0.5%.
Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted
CRSP index (based on the 60 months of data prior to portfolio formation); market value of equity (in
natural logarithms); book-to-market equity ratio (denoted BM); and dividend yield (denoted DP). Each
characteristic is also measured as a decile ranking (from 1, the lowest, to 10, the highest). Also reported is
the average proportion of the portfolio invested in firms with two-digit SIC codes of 35 and 36 (Industrial,
Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in
firms with a two-digit SIC code of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured
as of the portfolio formation date and averaged across all portfolio formation years.
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Table 4
(continued)

The full covariance model (model 1) uses the return covariance estimated over the most recent past
60 months prior to portfolio formation as the forecast. Covariance forecasts from the factor models
(models 2–4) are based on Equation (3) in the text. The one-factor model uses the return on the value-
weighted CRSP index as the factor. The three-factor model includes the return on the value-weighted
index as well as size and book-to-market factors. The nine-factor model uses as factors the market, size,
book-to-market, momentum, dividend yield, cash flow yield, the term premium, the default premium, and
the second principal component. Model 5 is based on a regression model that uses the most recent past
8 years of data. Return covariances between two stocks are measured over the most recent 3 years and
are regressed on the product of the standard deviations of the stocks’ returns measured over the earliest 5
years. The estimated model is used to generate the covariance forecasts. In model 6, stocks are assigned
to an industry-size group. There are 48 industries, as in Fama and French (1997). Each industry is divided
into a set of large firms (with market value of equity exceeding the median capitalization of NYSE firms
in that industry) and a set of small firms (with market value of equity below the NYSE median in that
industry). The covariance forecast for any two stocks is given by the average of all pairwise covariances
between stocks in their respective industry-size groups, based on the most recent past 60 months. Model 7
uses an equally weighted average of the forecasts from four models: the full covariance model, the three-
factor model, the nine-factor model, and the industry-size model. Models 8 and 9 are the value-weighted
and equally weighted portfolios, respectively, of all 250 stocks available at the portfolio formation date.

a common practice for most investors. We also impose an upper bound
of 2% on the portfolio weights, so as to mitigate the effects of forecast
errors.6 Given the optimized weights, we calculate buy-and-hold returns on
the portfolio for the subsequent 12 months, at the end of which the forecast-
ing and optimization procedures are repeated. The resulting time series of
monthly returns lets us characterize the performance and other properties
of optimized portfolios based on each of our models.

Table 4 summarizes the optimization results. For the sake of brevity, the
results in the table are all based on one model for forecasting variances,
namely, a model using regression-adjusted historical variances. Panel A
of the table evaluates each portfolio’s performance in terms of its aver-
age monthly return, standard deviation, Sharpe ratio, and its tracking error
volatility (the volatility of the monthly difference between the portfolio’s
return and the return on the S&P 500 index). These are all expressed on an
annualized basis. Also reported is the correlation between the portfolio’s
return and the return on the S&P 500 index, and the average number of
stocks in each portfolio with weights above 0.5%.

To provide some background, we present results for two simple diversi-
fication strategies that involve no optimization, namely the value-weighted
and equally weighted portfolios made up of the same stocks available to
the optimizer. An investor who diversifies by investing equal amounts in
each of the 250 available stocks would experience an annualized standard
deviation of 16.62%. A value-weighted portfolio takes larger positions in
some stocks than in others, but the tendency for larger stocks to have low
volatilities pulls down the overall standard deviation to 15.54%. In com-
parison, it is clear that some form of optimization helps. The annualized

6 Since our forecasts are based on the past 60 months of returns, and there are 250 stocks, the covariance
matrix is singular. Imposing the constraints guarantees a solution to the variance minimization problem.
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standard deviation of the optimized portfolio based on the full covariance
model is 12.94%, yielding a Sharpe ratio of 0.6405 (compared to a Sharpe
ratio of 0.6027 for the equally weighted portfolio).

As in our earlier forecasting exercises, the various models generally
provide similar results. To single out two cases, for example, the full co-
variance model yields an annualized standard deviation of 12.94%, while
the corresponding statistic for the three-factor model is 12.66%. As a fur-
ther illustration of the general point that more complicated models do not
necessarily do better, the prize for the single model generating the lowest
prospective standard deviation goes to model 5, which assumes that covari-
ances are proportional to the product of the stocks’ return volatilities. This
model essentially sets all pairwise correlations between stocks to a constant
and takes advantage of the relative stability of return variances. When co-
variance forecasts are generated by a composite model (model 7 in Table 4),
the standard deviation of the optimized portfolio drops to 12.59%.7

Panel B of Table 4 provides further clues as to why the models perform
so similarly. We report four characteristics of each portfolio: its beta relative
to the value-weighted CRSP market index, the average size (in logarithms),
average book-to-market ratio, and the average dividend yield of the stocks
in the portfolio. To ease comparison, each characteristic is also expressed
as a decile ranking (with 1 being the lowest and 10 being the highest). In
addition, we report the percentage of the portfolio invested in two industries,
namely firms whose first two digits of the SIC code are 35 or 36 (Industrial,
Commercial Machinery, Computer Equipment, and Electrical Equipment
excluding Computers) and firms with a two-digit SIC code of 49 (Electric,
Gas and Sanitary Services). These two industries display considerable dif-
ferences in terms of features such as return volatilities and market betas.
Each of the reported characteristics is measured as of the portfolio formation
date and are averaged over all portfolio formation years.

A striking feature of the optimized portfolios is that they all select stocks
with low betas. While the equally weighted portfolio of all the candidate
stocks has an average beta of 1.07 (placing it roughly in the fifth decile),
the betas of the optimized portfolios fall between 0.5 and 0.7 (the average
decile ranking is below 2). This emphasis on stocks with low betas may help
to explain why the portfolios tilt somewhat toward larger stocks and toward
value stocks. For the same reason, the portfolios all include a preponderance
of utility stocks, which tend to have low betas and low return volatilities. At
least 40 percent of each optimized portfolio is invested in the utility industry
(SIC code 49). This is compared with a weight of 8.66% for utilities in the
value-weighted portfolio and 15.31% in the equally weighted portfolio. In

7 The composite model is an equally weighted average of the forecasts from four other models. The
component models are the full covariance model, the three-factor model, the nine-factor model, and an
industry-size model.
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other words, the optimizer selects basically every utility it is presented.
On the other hand the weight given to stocks in SIC codes 35 and 36 is
relatively puny (never more than 4% for the optimized portfolios). As Fama
and French (1997) document, industries 35 and 36 tend to have higher than
average market betas.

4.2 Interpretation
The results of the variance-minimization exercises suggest the following
interpretation. One key conclusion is that there is a major factor which
is more important than the other influences on returns.8 This dominant
influence, the market, tends to overpower the remaining factors, so that their
incremental informativeness becomes very difficult to detect. This accounts
for why the different factor models generate similar forecast results.

Put another way, portfoliop’s varianceνp from the factor model [Equa-
tion (2)] is

νp =
K∑

j=1

β2
pjωj + δp. (4)

Hereωj is the variance of thej th factor,δp is the variance of the idiosyncratic
return, and (solely for expository convenience) it is assumed that the factors
are mutually uncorrelated. If the largest part of the variance is due to the
variance of the market factor, then what the optimizer tends to do in each
case generally is not very surprising. Namely, the optimizer selects stocks
with low market betas, such as utility stocks. Further, as an empirical matter,
stocks with low market betas generally tend to have low residual variances
and low total return volatilities as well. Any covariance model that exploits
these patterns will tend to yield similar results (and tend to do better than
the passively diversified equally weighted or value-weighted portfolios).
As a result, the optimized portfolios do not differ dramatically in terms
of their performance. Since the role of the remaining factors is obscured
by the major factor, there appears to be little benefit from obtaining finer
breakdowns of the systematic component of the volatility.

To calibrate the relative importance of the different factors, we use the
asymptotic principal components method of Connor and Korajzyck (1988).
Five factors are extracted from the monthly returns of all NYSE-AMEX
issues over the 5-year period ending on April 1998. To capture the average
situation, we partition the sample variance of the equally weighted CRSP
index into the proportions attributable to each principal component. The
first factor accounts for 75% of the variability of the index. The proportions

8 A similar interpretation is offered by Green and Hollifield (1992), who provide conditions under which
well-diversified portfolios are mean-variance efficient. The empirical evidence in Connor and Korajczyk
(1993) also suggests that after the first factor the marginal explanatory power of additional factors is
relatively low.
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captured by the remaining four principal components pale in comparison
(they amount to 6.9%, 3.6%, 8.8% and 5.6%, respectively). In short, after
accounting for the dominant influence of the first factor, further refinements
do not offer a great deal of improvement.

This line of thinking also suggests a way to structure our experiment to
yield sharper differences between the different covariance models. In partic-
ular, if we can remove the impact of the dominant market factor the impor-
tance of the remaining factors may show up more clearly. As it turns out, this
problem is a specific case of tracking a benchmark portfolio, which occurs
much more commonly in practice than the variance-minimization problem.

5. Minimizing Tracking Error Volatility

5.1 The Minimum Tracking Error Volatility Portfolio
In practice, mean-variance optimization is much more commonly applied
in a different context. Since professional investment managers are paid to
outperform a benchmark, they are in general not concerned with the absolute
variance of their portfolios, but are concerned with how their portfolio
deviates from the benchmark. Underperforming the benchmark for several
years typically results in the termination of a manager’s appointment. The
objective in this case is to minimize the portfolio’s tracking error volatility,
or the volatility of the difference between a portfolio’s return and the return
on the benchmark. In the context of the factor model, the generating process
for the return difference is

r pt − r Bt = βp0− βB0+
K∑

j=1

(βpj − βBj ) f j t + (εpt − εBt), (5)

wherer pt andr Bt are the returns on the portfolio and on the benchmark,
respectively, at timet , and their factor loadings are given byβpj andβBj for
j = 0,1, . . . , K . Accordingly, a portfolio whose loadings come close to
matching the benchmark’s would do a good job in minimizing the volatility
of excess returns,τp:

τp =
K∑

j=1

(βpj − βBj )
2ωj + ψp, (6)

where for ease of exposition it is assumed that the factors are mutually
uncorrelated.

The benchmark’s loadings can be estimated and used as anchors for the
desired portfolio’s exposures. Then the problem of minimizing tracking
error volatility is, at least potentially, much simpler than the problem of
minimizing the global portfolio variance. Whether this turns out to be the
case depends on the benchmark having exposures that can be matched by
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some feasible portfolio of the sample of candidate stocks. The variance-
minimization criterion discussed in the previous section sets the benchmark
to be the riskless asset with zero exposures on all the factors. In this instance,
as long as we insist on nonnegative weights, and as long as most stocks have
exposures to the important factors that are of the same sign, all the different
models will have an equally hard time. Similarly, there will not be notable
differences across the models if the problem were to use, for example, utility
stocks to track a single issue such as Netscape.

Given that the market factor is the most important, suppose the bench-
mark is a portfolio whose market exposure is not too unrepresentative of
those of the underlying set of stocks. It is then a less challenging problem
to minimize the role of this dominant source of return variability, since the
difference between the market betas of the portfolio and the benchmark can
be set close to zero. As a result, the incremental importance of any remain-
ing factors in the decomposition [Equation (6)] becomes easier to detect,
so there may be more opportunities to discriminate between the different
covariance models.

We implement the tracking error optimization problem as follows. We
choose the S&P 500 index as the benchmark. The minimum tracking error
volatility portfolio can be found by expressing every stock’s return in excess
of the return on the benchmark, and solving for the portfolio with the lowest
variance of excess returns. The constraints are as in the previous set of
optimization exercises (nonnegative weights and an upper bound of 2%).

Panel A of Table 5 summarizes the performance of the minimum track-
ing error volatility portfolios. The results are based on several models for
forecasting the covariance of excess returns. In every case, the forecasted
variance is set to be the regression-adjusted variance of the most recent past
60 monthly excess returns (over the S&P 500). As we had hoped, simpli-
fying the problem generates more discrimination between the covariance
models. The annualized tracking error volatility of the equally weighted
portfolio is 6.16%, while a three-factor model reduces the tracking error
volatility to 4.53%. Adding more factors gives rise to lower volatility rela-
tive to the benchmark. For example, a nine-factor model results in a tracking
error volatility of 4.01%.

The link between this finding and our earlier forecasting results is actually
quite natural. In the earlier case of minimizing portfolio variance, return
covariances between stocks are generally positive and the portfolio weights
are nonnegative by design. Hence the dominant component of the portfolio’s
variance comes from the covariance terms. As our forecasting exercises
suggest, the various models all have roughly the same degree of success in
predicting future covariances. Accordingly, the models do not differ much
when it comes to minimizing portfolio variance. In the case of tracking error
volatility, however, the covariances of returns in excess of the market return
can be positive as well as negative. There is therefore more scope, even
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with nonnegative weights, for the optimizer to cancel out the covariance
component of the portfolio’s tracking error volatility.9 Furthermore, the
models display more dispersion in terms of the association between the
forecasted and realized excess return covariances. At the 36-month horizon,
for instance, the correlation between forecasts and realized excess return
covariances is 0.13 for the full covariance model. For the one-factor model
the correlation is 0.14, and it is 0.20 for the three-factor model. As a result,
there is more room to differentiate between the models when the objective
is to minimize tracking error volatility.

To ensure that our findings are not sample specific, we also replicate the
experiment in Table 5 200 times for each of our models. In each replica-
tion we draw a different set of stocks to carry out the minimization with
respect to tracking error volatility. The results confirm the general pattern
of differences across the models in Table 5. For example, the tracking error
volatility averaged over all 200 replications is 3.99% for the full covari-
ance model, compared to 5.11% for the one-factor model and 4.54% for
the three-factor model. The average differences across the factor models in
tracking error volatility are large and statistically significant. Comparing the
one- and three-factor models, for example, the mean difference in tracking
error volatility is 0.57% (with a standard error of the mean of 0.01%).

Panel B examines how closely each model comes to the benchmark along
several attributes, and whether the degree of alignment is associated with
the realized tracking error volatility. In this way we can pinpoint potentially
relevant determinants of a portfolio’s risk profile. We take the characteristics
of the value-weighted index of the largest thousand stocks to be our proxy
for the benchmark portfolio’s characteristics.10 For each model we report
in the column denoted MAD the average (across portfolio formation years)
absolute difference between the characteristics of the optimized portfolio
and the benchmark.

Comparing the full covariance model and the one-factor model brings
out clearly the importance of nonmarket sources of return covariation. The
one-factor model concentrates on coming close to the benchmark’s mar-
ket exposure (the average absolute difference is 0.0277). It does so at the
expense of deviating considerably from the benchmark in terms of size,
book-to-market, and dividend yield (the average absolute differences are
the largest of all the optimized models in Table 5). The focus on beta is
evidently not enough, for the resulting tracking error volatility is relatively
large (5.12%). In comparison, the full covariance model delivers small de-

9 This may also help explain the tendency to have a relatively large portion of the optimized portfolios
invested in utility stocks (SIC code 49). The bulk of negative excess return covariances is clustered in the
utility industry, where 47% of the pairwise covariances between utility stocks and other stocks is negative.

10 Difficulties in identifying which firms belong to the S&P 500, especially in the early years of the sample
period, force us to work with a proxy for the index for this calculation.
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viations from the benchmark on all four dimensions and comes up with
a lower tracking error volatility (4.03%). More generally, the results sug-
gest that a higher-dimensional model should provide more opportunities to
narrow any potential divergence from the benchmark’s risk exposures. For
example, the tracking error volatility under the nine-factor model (4.01%)
is lower than under the one-factor model. Given, however, the possibility
of data snooping, requiring the optimized portfolio to be aligned with the
benchmark on a host of dimensions, may ultimately become counterpro-
ductive. This may explain why the tracking error volatilities for the full
covariance model and for the nine-factor model are roughly comparable.

The results for the value-weighted portfolio of all the 250 stocks provide
further testimony to the strong covariation among large stocks. This port-
folio comes closest to the benchmark on all the reported attributes, except
for beta, in terms of mean absolute differences. The resulting tracking error
volatility is 3.04%, the lowest of all the models in panel A. Since the bench-
mark in this case comprises large stocks, however, the performance of the
value-weighted portfolio may not hold for other choices of benchmark.11

Roll (1992) shows that a portfolio that is optimized with respect to track-
ing error volatility will in general not be mean-variance efficient. A com-
parison of Tables 4 and 5 lets us quantify the difference between the two
criteria. Optimizing with respect to tracking error volatility (Table 5) yields
portfolios that have larger standard deviations than the portfolios that are
optimized with respect to return volatility (Table 4). The average difference
is quite large and is on the order of 2%. Insofar as the emphasis in practice
on tracking error volatility reflects a mismatch between the objectives of the
portfolio manager and those of the ultimate investor, then the 2% difference
is an estimate of the cost of this mismatch.

5.2 Tracking Error Volatility Minimization by Matching on
Attributes

The models of the previous section attempt to minimize tracking error
volatility by forming portfolios whose factor loadings come close to the
benchmark portfolio’s loadings. Since the loadings must be estimated, this
approach may be handicapped by estimation errors. For example, there is
nothing to prevent the optimizer from choosing small stocks to track the S&P
500 Index if these small stocks happen to have past estimated loadings which
coincide with the benchmark’s. An approach which is less prone to mea-
surement errors may give better results. In this regard, it is intriguing to note
that the value-weighted portfolio of the 250 sample stocks yields the lowest
tracking error volatility in Table 5. As one way to formalize this observation,

11 For example, when the benchmark is an equally weighted portfolio of 500 randomly selected stocks, the
value-weighted portfolio has a tracking error volatility of 5.59%, compared to a tracking error volatility
of 2.02% under the full covariance model.
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Table 6
(continued)

correlation between the monthly portfolio return and the return on the S&P 500 index; the annualized standard deviation of the portfolio
return in excess of the S&P 500 return; and the average number of stocks each year with portfolio weights above 0.5%. Panel B reports
average characteristics of stocks in each portfolio: the beta relative to the value-weighted CRSP index (based on the sixty months of data
prior to portfolio formation); market value of equity (in natural logarithms); book-to-market equity ratio (denoted BM); and dividend
yield (denoted DP). Each characteristic is also measured as a decile ranking (from 1, the lowest, to 10, the highest). The column denoted
MAD reports the mean across years of the absolute difference between the optimized portfolio’s characteristic and the benchmark’s
characteristic. Also reported is the average proportion of the portfolio invested in firms with two-digit SIC codes of 35 and 36 (Industrial,
Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in firms with a two-digit SIC code
of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date, and averaged across all
portfolio formation years.

In the industry model, there are nine industry sectors. Each sector’s percentage contribution to the total market capitalization of
the benchmark is calculated. The fraction is then equally allocated across the stocks belonging to that sector and that are available for
portfolio formation, up to a maximum allocation of 2%. The weight for a stock is then its allocation, scaled so that the weights sum to
one across all the candidate stocks. In theindustry, size modeleach of the nine sectors is divided into two sets containing stocks that are
above (below) the median market capitalization of NYSE firms in the sector. Within each sector-size classification the portfolio formation
procedure is as for the industry model.

For the other models the general procedure is as follows. In each case we choose the portfolio weightsxj for stock j = 1, . . . , N
to minimize the portfolio’s residual variance and the sum of squared deviations between the portfolio’s attributes and the benchmark’s
attributes:

N∑
j=1

x2
j ω

2
j +

K∑
i=1

(
N∑

j=1

xj Zi j − Zi B

)2

,

whereω2
j is the residual variance for stockj andZi j is its i th attribute andZi B is the corresponding attribute for the benchmark. The

portfolio weights are constrained to be nonnegative and not larger than 2%. The attributes (measured as of the portfolio formation date)
are ordered and expressed as percentile ranks (between zero and one).
In thesize, residual variance modelthe attribute is firm size (equity market capitalization). Thesize, book-to-market, residual variance
modelaugments firm size with the ratio of book-to-market value of equity. Thenine attribute, residual variance modelincludes firm
size, book-to-market ratio, dividend yield, rate of return beginning seven months and ending 1 month before portfolio formation, rate of
return beginning 60 months and ending 12 months before portfolio formation, and loadings on the default premium factor, on the term
premium factor, on the equally weighted CRSP market index and on the second principal component. Model 6 is the value-weighted
portfolio of the largest 1000 stocks at each portfolio formation date.
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suppose that the cross section of returns is given by the following model:12

ri − r f =
K∑

j=1

Zi j f j + ui (7)

whereZi j is stocki ’s risk descriptor (or exposure) with respect to thej th
common factor f j . The difference between portfoliop’s return and the
benchmark return is thus

r p − r B =
K∑

j=1

(Zpj − ZBj ) f j + (up − uB). (8)

From this perspective, matching the benchmark with respect to the observ-
able attributesZBj , such as size or dividend yield, is another way to reduce
tracking error volatility.13

Table 6 reports the results from this alternative approach to minimizing
tracking error volatility. In general, matching the benchmark by attributes
produces lower tracking error volatilities, compared to the results in Ta-
ble 5. For example, the approach using loadings from a nine-factor model
(model 4 in Table 5) generates a tracking error volatility of 4.01%, while
a portfolio that matches the benchmark along the corresponding nine at-
tributes (model 5 in Table 6) generates a tracking error volatility of 3.01%.
To place this in perspective, it is quite common for investment managers
to be evaluated in terms of their information ratios (the portfolio alpha di-
vided by tracking error volatility). In the above example, the nine-attribute
matching procedure raises the information ratio by as much as a third.

While the factor loading approach benefits from being directly based on
the behavior of past returns, its advantage is more than offset by the mea-
surement errors in the loadings. As a result, a portfolio’s current attributes
provide more reliable indicators of its future tracking error. In some cases
the attribute matching procedure even compares favorably with the ideal
case of perfect foresight. In particular, the tracking error volatility under
the full covariance model assuming perfect foresight about the future co-
variance matrix of excess returns is 1.57% (compared to roughly 3.25%
and 3.01% for models 4 and 5 in Table 6). We also repeated the exercise in
Table 6 200 times, drawing different sets of stocks each time. The overall
conclusions are very similar. Notably, in every repetition the nine-attribute
matching procedure generates a lower tracking error volatility than the cor-

12 See, for example, BARRA (1990). Jagannathan and Wang (1992) also provide evidence on the potential
usefulness of firm characteristics such as size for estimating betas.

13 In practice this approach is commonly used among hedge funds and for long-short investment strategies,
where short positions are feasible. The underlying idea is that the long and short positions should be
closely aligned in terms of attributes such as market risk, size, dividend yield, and industry composition.

964



Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model

responding nine-factor covariance model. The average reduction across the
replications is 0.95% (the standard error of the mean is 0.01%).

One widely used approach to replicating an index is to match the bench-
mark’s industry composition. Model 1 in Table 6 does this and yields an
annualized tracking error volatility of 5.79%. Compared to the other models
in Table 6, it clearly does not do well. Requiring that the portfolio match the
benchmark’s size composition as well as its industry composition reduces
the tracking error volatility to 4.60% (model 2). Indeed, of all the different
attributes, size turns out to be the critical dimension on which to match. The
size-matched minimum residual variance portfolio (model 3) has a tracking
error volatility of 3.53%, which is close to the performance (3.01%) of the
nine attribute model (model 5).

It would be premature, however, to conclude from this exercise that size
is the only important attribute to match. In particular, this finding may be
specific to the nature of the index chosen, namely large stocks making up the
S&P 500. To check up on this, Table 7 provides results for minimizing track-
ing error volatility relative to two other benchmarks. The benchmark is either
the value-weighted portfolio of the 250 stocks that are ranked highest by
the ratio of book-to-market value of equity (in part I), or the value-weighted
portfolio of the 250 stocks that are ranked lowest by the book-to-market ra-
tio (part II). These two reference portfolios (the value stock benchmark and
the growth stock benchmark, respectively) correspond in spirit to indexes
that are widely used in practice to evaluate the performance of value- and
growth-oriented investment managers.

Using the value or growth benchmarks generally leads to larger tracking
error volatilities compared to the case of the S&P 500 benchmark. For
example, under the full covariance model, the tracking error volatility is
4.72% with respect to the value benchmark (part I, panel A) and 5.00% with
respect to the growth benchmark (part II, panel A), compared to 4.03% with
respect to the S&P 500 index (Table 5). Matching by size only (model 4 in
Table 7) would not be the most successful procedure, as it produces large
differences from the benchmark with respect to other attributes. In particular,
the average absolute difference between the book-to-market ratio of the
size-matched portfolio and the value stock benchmark is 0.3881, while the
average absolute difference with respect to dividend yield is 0.0156. The
corresponding differences for the growth stock benchmark are 0.2286 and
0.0120, respectively. Consequently, the tracking error volatility under the
size-matching procedure is 4.61% under the value benchmark and 4.78%
under the growth benchmark. Instead, matching on nine attributes yields
the lowest tracking error volatilities (3.79% and 3.97% for the value and
growth benchmarks, respectively).14

14 The attribute-matching procedure also works well when we use an equally weighted index of 500 randomly
selected stocks as the benchmark. In this case, matching on nine attributes generates a tracking error
volatility of 1.66%, compared to 2.02% using the full covariance model.
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Table 7
(continued)

returns realized on the portfolio; the annualized average Sharpe ratio (the mean return in excess of the
Treasury bill rate, divided by the standard deviation); the correlation between the monthly portfolio return
and the return on the benchmark; the annualized standard deviation of the portfolio return in excess of
the benchmark’s return; and the average number of stocks each year with portfolio weights above 0.5%.
Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted
CRSP index (based on the 60 months of data prior to portfolio formation); market value of equity (in
natural logarithms); book-to-market equity ratio (denoted BM); and dividend yield (denoted DP). Each
characteristic is also measured as a decile ranking (from 1, the lowest, to 10, the highest). The column
denoted MAD reports the mean across years of the absolute difference between the optimized portfolio’s
characteristic and the benchmark’s characteristic. Also reported is the average proportion of the portfolio
invested in firms with two-digit SIC codes of 35 and 36 (Industrial, Commercial Machinery, Computer
Equipment and Electrical Equipment excluding Computers) and in firms with a two-digit SIC code of 49
(Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date,
and averaged across all portfolio formation years.

The full covariance model (model 1) uses the return covariance estimated over the most recent past
60 months prior to portfolio formation as the forecast. Models 2 and 3 are the value-weighted and equally
weighted portfolios, respectively, of all the 250 candidate stocks available at each portfolio formation
date. Details on implementing the matching procedure used for models 4 and 5 are given in the notes to
Table 6. The value (growth) stock benchmark is a value-weighted portfolio comprising the 250 stocks
that are ranked highest (lowest) each year by the ratio of book-to-market value of equity.

6. Summary and Conclusion

Although the concept of portfolio mean-variance optimization forms the
backbone of modern portfolio theory, it has come into widespread use only
fairly recently. With the recent emphasis on risk management there has
been a proliferation of portfolio optimization techniques. Yet there is very
little scientific evidence on the performance of alternative risk optimization
procedures. This article provides evidence with respect to forecasting the
return covariances and variances that are key inputs to the optimizer. We
compare the forecasting performance of different models of covariances,
and we assess the out-of-sample performance of optimized portfolios based
on each model.

Factor models of security returns were originally proposed as parsimo-
nious ways to predict return covariances and simplify portfolio optimization.
They remain at the center stage of portfolio analysis and have also been ex-
tensively used in modeling the behavior of expected returns. Accordingly,
the bulk of our analysis focuses on applying such models.

We find that a few factors such as the market, size, and book-to-market
value of equity capture the general structure of return covariances. For ex-
ample, a model based on these three factors generates a correlation of 0.1994
between covariance forecasts and subsequent covariances (measured over a
12-month horizon). Expanding the number of factors does not necessarily
improve our ability to predict covariances. Instead, the higher-dimensional
models tend to overfit the data. For example, the full covariance model
(which essentially assumes that there are as many factors as stocks) gener-
ates a correlation of 0.1792 between forecasted and realized covariances.
However, there is substantial imprecision in the forecasts, so that the factor
models yield mean absolute forecast errors that are not notably different
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from a simple model which assumes that all stocks share the same average
pairwise covariance. Relaxing the linearity assumption underlying the fac-
tor models and using more updated estimates of factor loadings does not
improve forecast power.

The true test of the models’ forecasting ability is in the context of opti-
mized portfolios. We conduct two types of experiments. First, in the spirit
of the work of Markowitz we generate the global minimum variance portfo-
lio under each model. In practice, however, investment managers who use
portfolio optimization methods are evaluated relative to benchmarks. Ac-
cordingly, in the second set of experiments we compare the models in terms
of minimizing tracking error volatility (the standard deviation of the differ-
ence between the returns on the portfolio and a benchmark). We highlight
the global minimum variance or global minimum tracking error volatility
portfolios, as any other point on the efficient frontier dilutes the importance
of the second moments and concentrates more on expected returns.

The good news is some form of portfolio optimization helps for risk
control. The various global minimum variance portfolios have future an-
nualized standard deviations between 12.59% and 12.94%. In contrast, a
passively diversified portfolio which invests equal amounts in each stock
has a much higher standard deviation (16.62% per year). As the results on
forecasting covariances suggest, however, there is very little discrimina-
tion between the models under a minimum variance criterion. A one-factor
model is as good as a nine-factor model. All the models exploit the idea that
the biggest benefits arise from reducing exposure to the market. The histori-
cal betas of the portfolios average about 0.6, compared to 1.1 if stocks were
equally weighted. The objective of keeping the beta low explains why utility
stocks are so heavily favored in the global minimum variance portfolios. In
essence, the optimizer grabs every single utility.

The tracking error volatility criterion provides an important test case
for distinguishing between the risk models. In particular, the tracking error
(return in excess of the benchmark) tends to diminish the dominant influence
of the market factor, thereby improving our ability to sort out the relative
importance of any remaining factors. The different models do stand apart
more when it comes to minimizing the tracking error volatility (as long as the
benchmark’s risk exposures are not too unrepresentative of the exposures
of the underlying set of stocks). As an example of a naive approach, an
equally weighted portfolio has a tracking error volatility of 6.16% per year.
A one-factor model for forecasting tracking error covariances generates
a tracking error volatility of 5.12% per year, while a nine-factor model
pushes this down to 4.01% per year. This sizable reduction in tracking
error volatility highlights the importance of optimization for investment
management practice.

When the objective is to minimize tracking error volatility, we find that
a simple heuristic procedure does better than the standard optimization
approach. The standard approach is handicapped by the noisiness in fore-
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casting covariances as well as the complex structure of the optimization.
Instead, the alternative procedure chooses a portfolio which matches the
benchmark along attributes such as size or book-to-market ratio. In general,
the choice of benchmark and the set of available stocks determine the num-
ber of attributes necessary for matching. When we use the S&P 500 index
as the benchmark, for example, the results suggest that two attributes, size
and book-to-market, suffice (the tracking error volatility drops to 3.25%).
In cases where a value or growth stock index is the benchmark, a larger
number of attributes is needed to produce superior results.

In a realistic setting, such operational issues (the choice of forecasting
model for covariances, the use of attributes or loadings) matter more in
practice when the objective is to minimize portfolio tracking error volatility,
rather than minimizing portfolio variance. Nonetheless, the imprecision
with which return covariances are forecast does not detract from the main
message that portfolio optimization helps substantially in risk reduction.
At the same time, the low correlation between past and future covariances
suggests that a dose of humility may not be the least important part of any
risk optimization procedure.

Appendix: Variance Forecasting Models

We use several different models to forecast return variances. In each case, attributes of
a stock are measured over one period. These attributes are related to return variances
measured over a disjoint subsequent period (to maintain the predictive flavor of our
tests). The estimated model is then used to generate forecasts, using the most recently
observed attributes of the stock. Consider, for instance, the first set of forecasts made
at the end of April 1968 (timet). The forecasting model is formulated using the most
recent past 8 years of data (in this example extending back to April 1960). For each
stock i , firm attributes, denotedXi,t−1, are measured over the earliest 5 years (in the
example these are measured over the period 1960–1965). These are related to variances
vi,t measured over the 3 years (e.g., from 1965 to 1968) immediately prior to the forecast
date using the model

vi,t = Xi,t−1φ + εi,t . (9)

We then step forward to the forecast date and update the firm attributes,Xi,t , using the
most recent past 5 years (e.g., from 1963 to 1968). Forecasts are generated asXi,t φ̂,
whereφ̂ is the least squares estimate from Equation (9).15

Model 1 forecasts future variances from past variances (after adjusting for realized
variances’ tendency to regress to the mean). Model 2 predicts a stock’s variance from
its loading on three factors: the market, the size factor, and the book-to-market factor.
The loadings are estimated for each stock from a multiple regression using the past
60 months of returns. Note that while the model lets variances depend on the levels

15 In Tables 1 and 2, we estimate variances based on the most recent 60 months of returns. To get corre-
sponding results, we calibrate the variance forecasting models by adding an adjustment factor so that the
mean of the forecast distribution matches the mean of the actual variances measured over the 60 months
immediately prior to the forecast date. Note that the model estimation and calibration makes no use of
information about realizations in the period subsequent to the forecast date.
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of the loadings, variances are not restricted to be proportional to the squared loadings.
Model 3 uses indicator variables based on the same set of estimated loadings on the three
factors. Corresponding to each loading we define two dummy variables. If the loading is
high (above the 80th percentile of the distribution of loading estimates of NYSE firms),
the first dummy variable takes the value of one and the second dummy variable takes
the value of zero; if the loading is low (below the 20th percentile of loading estimates
of NYSE firms), the first dummy variable equals zero and the second dummy variable
is set to one. In total, then, six dummy variables are defined. Model 4 uses the values
of three stock characteristics: market beta, size, and dividend yield to predict future
variances. Model 5 uses dummy variables based on four attributes (market beta, size,
book-to-market, and dividend yield). The dummy variables are defined as in Model 3,
yielding eight variables. Both models 4 and 5 also include an additional dummy variable
to handle the case of zero-dividend yield (the dummy variable equals one if the dividend
yield is zero, and is zero otherwise). Finally, model 6 is a composite forecasting model
that gives equal weights to the forecasts from models 1, 3, and 5.16

Table A.1 reports the results for a subset of our variance forecasting models. The
model based on regression-adjusted historical variance (model 1) is associated with the
largest dispersion in forecast values. The range of forecasts from this model is 0.0402,
and the standard deviation of forecasts is 0.50%. Nonetheless, its forecasting perfor-
mance is as good as the other, more elaborate models in the table. Of all the individual
forecasting models, the regression-adjusted historical variance model produces the low-
est average absolute error (0.0062) as well as the highest correlation between forecasts
and realizations (52.25%). Again, the poor out-of-sample performance of the higher-
dimensional models may be attributable to data snooping. Combining the information
in the loadings and attributes along with the information in historical variance to yield a
composite forecast (model 6) raises the correlation to 54.47%, representing only a 4%
relative improvement.
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